Kubernetes Namespaces

Kubernetes Namespaces

Introduction to Kubernetes Namespaces

Kubernetes namespaces are objects which partition a single Kubernetes cluster into multiple virtual clusters. Each Kubernetes namespace provides the scope for Kubernetes Names it contains; which means that by using the combination of an object name and a Kubernetes Namespace, each object gets a unique identity across the cluster.

By default, a Kubernetes cluster is created with the following three namespaces:

  • default: By default all the resource created in Kubernetes cluster are created in the default namespace. By default the default namespace can allow applications to run with unbounded CPU and memory requests/limits (Until someone set resource quota for the default namespace).
  • kube-public: Namespace for resources that are publicly readable by all users. This namespace is generally reserved for cluster usage.
  • kube-system: It is the Namespace for objects created by Kubernetes systems/control plane.

Prerequisites

  • Basic experience with Linux/Unix system.
  • Familiarity with Kubernetes.
  • Kubernetes cluster to perform the demo.

Creating Kubernetes Namespaces

  • List the namespaces present in the Kubernetes cluster.
$ kubectl get namespaces

NAME          STATUS    AGE
default       Active    5m
kube-public   Active    5m
kube-system   Active    5m

We can create a Kubernetes Namespace in two ways either by using kubectl create namespace command or by using configuration file.

  • Create a new Kubernetes namespace my-namespace with command.
$ kubectl create ns my-namespace namespace/my-namespace created
  • List the Kubernetes namespaces.
$ kubectl get namespace

NAME           STATUS    AGE
default        Active    8m
kube-public    Active    8m
kube-system    Active    8m
my-namespace   Active    3s

We can also create Kubernetes namespaces using the configuration file.

  • Let’s create a Kubernetes namespace from configuration file.
apiVersion: v1
  kind: Namespace
  metadata:
    name: test-ns

  • Deploy above file.
$ kubectl apply -f namespace.yaml 
namespace/test-ns created
  • List the namespaces.
$ kubectl get namespace

NAME           STATUS    AGE
default        Active    18m
kube-public    Active    18m
kube-system    Active    18m
my-namespace   Active    9m
test-ns        Active    2m

Use-cases for Kubernetes Namespaces

Kubernetes namespaces have several use-cases. Let’s take a look at some of the main reasons why Kubernetes namespaces should be used:

Partition Cluster resources.

Kubernetes Namespaces can be used to divide a cluster into logical partitions allowing a single large Kubernetes cluster to be used by multiple users and teams, or a single user with multiple applications. Each user, team, or application running in a Kubernetes Namespace, is isolated from every other user, team, or application in other Kubernetes Namespaces and they operate as if they are the sole user of the cluster (note that Namespaces do not provide network segmentation).

Deploy application in a specific Kubernetes namespace.

Now we will see how to create a Kubernetes object inside specific namespace.

  • List the namespaces.
$ kubectl get namespace

NAME           STATUS    AGE
default        Active    18m
kube-public    Active    18m
kube-system    Active    18m
my-namespace   Active    9m
test-ns        Active    2m
  • Lets create a pod from following configuration.
apiVersion: v1
kind: Pod
metadata:
  name: mypod
  namespace: my-namespace
  labels:
     app: mypod
spec:
  containers:
  - name: mypod
    image: nginx:alpine

In above configuration, we have specified the Kubernetes namespace with field namespace: my-namespace. So this pod will be created inside the my-namespace namespace.

  • Deploy a pod with above configuration.
$ kubectl apply -f mypopd.yaml
pod/mypod created
  • List the pods present in my-namespace namespace.
$ kubectl get pod -n my-namespace

NAME      READY     STATUS             RESTARTS   AGE
mypod     1/1       Running            0          16s

Bind user to a specific Kubernetes namespace.

By setting the context, we can bind a user to a specific Kubernetes namespace, so this namespace will be the default Kubernetes namespace for that user. You can do it either by modifying the kubeconfig file or using following command

  • Create a Kubernetes Namespace for different teams like dev, qa and production
$ kubectl create ns dev # Namespace for Developer team
$ kubectl create ns qa # Namespace for QA team
$ kubectl create ns production # Namespace for Production team
  • Set the context for different user groups.
# Bind dev context to dev namespace
$ kubectl config set-context dev --namespace=dev --cluster=kubernetes --user=dev

# Bind qa context to QA namespace
kubectl config set-context qa --namespace=qa --cluster=kubernetes --user=qa

# Bind production context to production namespace
kubectl config set-context production --namespace=prod --cluster=kubernetes --user=production

Here we have created bindings for the Dev team to dev namespace, QA team to qa namespace and Production team to production namespace. These specific Kubernetes namespaces will act as the default namespace for the particular team assigned to it. For detailed information of Kubernetes context and kubeconfig follow the documentation given at kubernetes.io.

Ability to specify resource consumption policies.

With Resource Quotas applied on Kubernetes namespaces, we can limit the cluster resources usage of a particular set of users. A resource quota is responsible for limiting resource consumption per Kubernetes namespace. It also can limit the quantity of objects that can be created in a Kubernetes namespace by type, as well as the total amount of compute resources that may be consumed by resources in that Kubernetes namespace.

Now we will see how we can configure the resource quota for a specific Kubernetes Namespace.

  • Create a new demo namespace.
$ kubectl create namespace demo
namespace/demo created
  • Create a resource qouta object for demo namespace.
apiVersion: v1
kind: ResourceQuota
metadata:
  name: mem-cpu
  namespace: demo
spec:
  hard:
    requests.cpu: "0.5"
    requests.memory: 512Mi
    limits.cpu: "1"
    limits.memory: 1Gi
Here, we are specifying that in demo namespace; we cannot request more than 0.5 CPU and 512Mi RAM overall. So if we already have a pod running with 256 Mi request; we would not be able to schedule a new pod, if it requires more than remaining 256 Mi memory. Similarly, we are setting the hard limit of 1 CPU and 1GB RAM for the Kubernetes namespace.
  • Deploy this resource quota object.
$ kubectl apply -f qouta.yaml
resourcequota/mem-cpu created
  • Get the detailed information about the above created resource quota.
$ kubectl get resourcequota mem-cpu --namespace=demo --output=yaml

apiVersion: v1
kind: ResourceQuota
metadata:
  annotations:
    kubectl.kubernetes.io/last-applied-configuration: |
      {"apiVersion":"v1","kind":"ResourceQuota","metadata": {"annotations":{},"name":"mem-cpu","namespace":"demo"},"spec":{"hard":{"limits.cpu":"1","limits.memory":"1Gi","requests.cpu":"0.5","requests.memory":"512Mi"}}}
  creationTimestamp: 2018-11-21T07:05:48Z
  name: mem-cpu
  namespace: demo
  resourceVersion: "6091"
  selfLink: /api/v1/namespaces/demo/resourcequotas/mem-cpu
  uid: dfd1002c-ed5b-11e8-ab3b-507b9d3bd0b6
spec:
  hard:
    limits.cpu: "1"
    limits.memory: 1Gi
    requests.cpu: 500m
    requests.memory: 512Mi
status:
  hard:
    limits.cpu: "1"
    limits.memory: 1Gi
    requests.cpu: 500m
    requests.memory: 512Mi
  used:
    limits.cpu: "0"
    limits.memory: "0"
    requests.cpu: "0"
    requests.memory: "0"

Here we can see the information about hard limit as well as used resources for a given Kubernetes namespace.

  • Deploy Demo1 application within this Kubernetes namespace. Whose resource request can be fulfilled by the resource quota set for this Kubernetes namespace.
apiVersion: v1
kind: Pod
metadata:
  namespace: demo
  name: pod-demo1
  labels:
     app: demo1
spec:
  containers:
  - name: demo1
    image: nginx:alpine
    ports:
    - containerPort: 80
    resources:
      limits:
        memory: "400Mi"
        cpu: "0.3"      
      requests:
        memory: "300Mi"
        cpu: "0.2"
  • Deploy this demo1 application.
$ kubectl apply -f demo1.yaml
pod/pod-demo1 created

This application resource request was within the resource quota’s specification. So this pod got deployed.

  • Now let’s create another pod in demo Kubernetes namespace. Whose resource request is exceeding the resource quota set for the Kubernetes namespace. And let’s see what happens.
apiVersion: v1
kind: Pod
metadata:
  namespace: demo
  name: demo-pod2
  labels:
     app: demo
spec:
  containers:
  - name: demo
    image: nginx:alpine
    ports:
    - containerPort: 80
    resources:
      limits:
        memory: "700Mi"
        cpu: "0.6"      
      requests:
        memory: "600Mi"
        cpu: "0.6"
  • Lets try to deploy this demo2 application.
$ kubectl apply -f demo2.yaml

Error from server (Forbidden): error when creating "demo2.yaml": pods "demo-pod2" is forbidden: exceeded quota: mem-cpu, requested: limits.memory=700Mi,requests.cpu=600m,requests.memory=600Mi, used: limits.memory=400Mi,requests.cpu=200m,requests.memory=300Mi, limited: limits.memory=1Gi,requests.cpu=500m,requests.memory=512Mi

This error occured because this pod is requesting the greater resources than specified in resource quota.

  • Lets delete the demo namespace. It will delete namespace along with all the object running inside it.
$ kubectl delete namespace demo
namespace "demo" deleted
  • Delete earlier created Kubernetes namespace.
$ kubectl delete namespace my-namespace test-ns
namespace "my-namespace" deleted
namespace "test-ns" deleted

Policies to run resources.

With the Role-based access control (RBAC), we can control the access permissions within a particular Kubernetes Namespace. Cluster Admin can control the access permission granted to the user or groups of users in specific Kubernetes namespaces; this can be achieved by the help of Role Binding.

A unique scope for Kubernetes Names.

Kubernetes namespaces provide the scope for Kubernetes Names. Within the Namespace an Object can be referred by a short name like my-app and the Namespace adds further scope to identify the object, e.g. my-app.my-namespace. Within the Kubernetes Namespace the name of the object must be unique and the combination of Name and Namespace (e.g. my-app.my-namespace ) must have to be unique at cluster level.

Summary

Kubernetes namespaces are essential objects for dividing and managing Kubernetes clusters. Kubernetes namespaces allow us to logically segregate and assign resources to individual users, teams or applications. Kubernetes Namespaces provide the basic building blocks for resource usage allowance, access control and isolation for applications, users or groups of users. By using Kubernetes Namespaces, you can increase resource efficiencies, as a single Kubernetes cluster can now be used for a diverse set of workloads.

References

  • Kubernetes Namespaces : https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
  • Kubernetes Names : https://kubernetes.io/docs/concepts/overview/working-with-objects/names/
  • Role-based access control (RBAC) : https://kubernetes.io/docs/reference/access-authn-authz/rbac/
  • Resource Quotas : https://kubernetes.io/docs/concepts/policy/resource-quotas/)
  • Kubeconfig : https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

This blog post was contributed by our training partner CloudYuga.
                          For expert training in Kubernetes, including Kubernetes namespaces, check out their website at https://cloudyuga.guru/

         Discover all that Nirmata’s DevSecOps platform for Kubernetes has to offer by visiting this page.

 

 

Kubernetes Namespaces with Nirmata
Kubernetes For Developers Part 5 - Volume Objects and Persistent Volumes
No Comments

Sorry, the comment form is closed at this time.